Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38613030

ABSTRACT

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Subject(s)
Camellia sinensis , Hyperlipidemias , Humans , Tea , Hyperlipidemias/drug therapy , Hyperlipidemias/prevention & control , Fermentation , Bile Acids and Salts
2.
Food Chem ; 444: 138680, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38325077

ABSTRACT

Fermentation durations are crucial in determining the quality of black tea flavour. The mechanism underlying the degradation of black tea flavour caused by inappropriate fermentation duration remains unclear. In this study, the taste of black teas with different fermentation durations (BTFs) was analysed using sensory evaluation, electronic tongue, and metabolomics. The results revealed significant differences in 46 flavour profile components within the BTFs. Notably, metabolites such as gallocatechin gallate, gallocatechin, and epigallocatechin were found to be primarily reduced during fermentation, leading to a reduction in the astringency of black tea. Conversely, an increase in d-mandelic acid and guanine among others was observed to enhance the bitter flavour of black tea, while 3-Hydroxy-5-methylphenol nucleotides were found to contribute to sweetness. Furthermore, succinic acid and cyclic-3',5'-adenine nucleotides were associated with diminished freshness. This study offers a theoretical foundation for the regulation of flavour quality in large leaf black tea.


Subject(s)
Camellia sinensis , Tea , Tea/metabolism , Taste , Fermentation , Camellia sinensis/metabolism , Metabolomics/methods , Plant Leaves/metabolism
3.
ACS Appl Mater Interfaces ; 15(51): 59722-59730, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38091471

ABSTRACT

In this work, the synthetic principles of spiky Au nanoparticles (spiky Au NPs) with an average number of spikes of less than or equal to six and controlled core sizes by using Au nanorods as seeds (Au-NR seeds) are summarized on the basis of the results of a series of control experiments. In addition, one empirical equation that can roughly estimate the number of spiky Au NPs is proposed, demonstrated by the results of the products prepared from different aspect ratios of Au-NRs as seeds and non-Au-NR seeds. Moreover, the synthetic principles of spiky Au NPs are further demonstrated by taking the successful synthesis of a serials of spiky Au21×7 NPs. Furthermore, the as-prepared spiky Au@Au11.8Pd88.2 NPs with ultrathin AuPd shells, which are derived from spiky Au21×7 NPs with the smallest cores, can bear excellent catalytic activity (say, E1/2 = 0.947 V) and durability toward the oxygen reduction reaction (ORR) in alkaline conditions, compared with commercial Pt/C catalysts (E1/2 = 0.883 V).

4.
Mol Ther ; 31(10): 3015-3033, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37641404

ABSTRACT

Pirfenidone and nintedanib are only anti-pulmonary fibrosis (PF) drugs approved by the FDA. However, they are not target specific, and unable to modify the disease status. Therefore, it is still desirable to discover more effective agents against PF. Vimentin (VIM) plays key roles in tissue regeneration and wound healing, but its molecular mechanism remains unknown. In this work, we demonstrated that atractylodinol (ATD) significantly inhibits TGF-ß1-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transition in vitro. ATD also reduces bleomycin-induced lung injury and fibrosis in mice models. Mechanistically, ATD inhibited TGF-ß receptor I recycling by binding to VIM (KD = 454 nM) and inducing the formation of filamentous aggregates. In conclusion, we proved that ATD (derived from Atractylodes lancea) modified PF by targeting VIM and inhibiting the TGF-ß/Smad signaling pathway. Therefore, VIM is a druggable target and ATD is a proper drug candidate against PF. We prove a novel VIM function that TGF-ß receptor I recycling. These findings paved the way to develop new targeted therapeutics against PF.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Bleomycin , Epithelial-Mesenchymal Transition , Lung/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta1/metabolism , Vimentin/antagonists & inhibitors , Vimentin/metabolism
5.
Phytochemistry ; 209: 113612, 2023 May.
Article in English | MEDLINE | ID: mdl-36813220

ABSTRACT

Seven undescribed compounds, colletotrichindoles A-E, colletotrichaniline A, and colletotrichdiol A, as well as three known compounds, (-)-isoalternatine A, (+)-alternatine A and 3-hydroxybutan-2-yl 2-phenylacetate were isolated from the marine-derived fungus Colletotrichu gloeosporioides BB4. The racemic mixtures colletotrichindole A,colletotrichindole C, and colletotrichdiol A were further separated by chiral chromatography to give three pairs of enantiomers (10S,11R,13S)/(10R,11S,13R)-colletotrichindole A, (10R,11R,13S)/(10S,11S,13R)-colletotrichindole C, and (9S,10S)/(9R,10R)-colletotrichdiol A, respectively. The chemical structures of seven undescribed compounds and the known compounds, (-)-isoalternatine A, and (+)-alternatine A were determined using a combination of NMR, MS, X-ray diffraction, ECD calculations, and/or chemical synthesis. All possible enantiomers of colletotrichindoles A-E were synthesized and used to determine the absolute configurations of the natural products by comparing their spectroscopic data and HPLC retention times on a chiral column. In addition, the X-ray crystal structures of the known compounds (-)-isoalternatine A and (+)-alternatine A were also obtained to confirm their absolute configurations. (10S,11R,13S)-Colletotrichindole A, colletotrichindole B, and (+)-alternatine A significantly reduced triglyceride levels in 3T3-L1 cells with EC50 values of 5.8, 9.0, and 1.3 µM, respectively.


Subject(s)
Colletotrichum , Indole Alkaloids , Indole Alkaloids/pharmacology , Magnetic Resonance Spectroscopy , Lipids , Molecular Structure
6.
Fitoterapia ; 166: 105433, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36646355

ABSTRACT

By adding natural amino acids into the medium as sole nitrogen source, twenty-four compounds, including two new alkaloids lentinuses A-B (1-2) with a rare oxazinone core in marine natural products, one new natural product 3-acetamido-4-phenylfurazan (3), 9ß-ergosterol (22) were firstly discovered from a marine fungus, and twenty known compounds (4-21, 23-24) were isolated from the marine-derived fungus Lentinus sajor-caju. The chemical structures of all these compounds were elucidated by HRMS, NMR spectroscopy and X-ray diffraction. Compounds 1-24 were evaluated for their inhibitory activity against TGF-ß1-induced collagen accumulation in human fetal lung fibroblasts (HFL1). Compounds 2, 3, 12, 22, and 23 showed potent activity against TGF-ß1-induced collagen accumulation and low toxicity to HFL1 cells. The binding mode of lentinus B (2) with TGF-ß1 receptor was then performed by using Schrödinger software, and the result showed that lentinus B possesses a strong binding force such as hydrogen bonding and hydrophobic interactions to the protein, which may provide a theoretical basis to design more potent anti-fibrotic drugs in the future.


Subject(s)
Alkaloids , Lentinula , Humans , Transforming Growth Factor beta1/metabolism , Molecular Structure , Lentinula/chemistry , Lentinula/metabolism , Collagen/metabolism , Alkaloids/pharmacology , Alkaloids/metabolism , Fibrosis
7.
Phytomedicine ; 108: 154494, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36279758

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is an important pathological feature of chronic heart failure (CHF). Regulation of mitophagy can effectively maintain mitochondrial homeostasis and energy metabolism, thereby inhibiting the development of CHF. Nuanxinkang (NXK), a Chinese herbal compound preparation, has significant cardioprotective effects on CHF; however, its underlying mechanism on mitophagy has not been completely clarified. This research intended to investigate the mechanism of NXK in treating myocardial infarction (MI)-induced CHF. METHODS: The left anterior descending coronary artery (LAD) ligation surgery was performed to establish an MI-induced CHF model in male C57BL/6 mice. From 1 day after surgery, mice were given NXK (0.41, 0.82 or 1.65 g/kg/d), Perindopril (PDPL, 0.607 mg/kg/d), or an equivalent amount of sterile water by gavage for 28 continuous days. Then, mice were examined for cardiac function, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial structure and mitophagy levels of cardiomyocytes, etc. In addition, a hypoxic injury model was created using HL-1 cardiomyocytes from wild-type (WT) mice. HL-1 cells were pretreated with or without NXK-containing serum. Mitochondrial function and mitophagy levels were examined in HL-1 cells. RESULTS: In MI-induced CHF mice, cardiac dysfunction, severe cardiac remodeling, elevated levels of oxidative stress, reduced ATP levels, and inhibition of PINK1/Parkin-mediated mitophagy were observed. High-dose NXK treatment (1.65 g/kg/d) significantly improved myocardial energy metabolism, inhibited cardiac remodeling, improved cardiac function, and restored cardiac PINK1/Parkin-mediated mitophagy levels to some extent in MI mice. In vitro, elevated levels of mitochondrial reactive oxygen species (ROS) with impaired mitochondrial membrane potential (ΔΨm) were observed in hypoxic HL-1 cells. While NXK treatment significantly protected cardiomyocytes from hypoxia-induced mitochondrial dysfunction, which is consistent with the in vivo results. Further studies showed that NXK could increase PINK1/Parkin-mediated mitophagy levels in cardiomyocytes, which could be blocked by the mitophagy inhibitor Mdivi-1. CONCLUSION: In conclusion, NXK could prevent cardiac mitochondrial dysfunction and improve cardiac function against MI-induced CHF by promoting Pink1/Parkin-mediated mitophagy, which represents a very prospective strategy for the treatment of CHF.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Myocardial Infarction , Animals , Male , Mice , Heart Failure/drug therapy , Heart Failure/etiology , Mice, Inbred C57BL , Mitophagy , Myocardial Infarction/drug therapy , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ventricular Remodeling , Drugs, Chinese Herbal/pharmacology
8.
Front Microbiol ; 13: 947226, 2022.
Article in English | MEDLINE | ID: mdl-35966687

ABSTRACT

Pulmonary fibrosis is a scarring disease of lung tissue, which seriously threatens human health. Treatment options are currently limited, and effective strategies are still lacking. In the present study, 25 compounds were isolated from the deep-sea fungus Trichoderma sp. MCCC 3A01244. Among them, two ß-carboline alkaloids, trichocarbolines A (1) and C (4) are new compounds. The chemical structures of these compounds were elucidated based on their HRESIMS, 1D and 2D NMR spectra, optical rotation calculation, and comparisons with data reported in the literature. Trichocarboline B [(+)- and (-)-enantiomers] had previously been synthesized, and this is its first report as a natural product. Their anti-pulmonary fibrosis (PF) activity and cytotoxicity were investigated. Compounds 1, 11, and 13 strongly inhibited TGF-ß1-induced total collagen accumulation and showed low cytotoxicity against the HFL1 cell line. Further studies revealed compound 1 inhibited extracellular matrix (ECM) deposition by downregulating the expression of protein fibronectin (FN), proliferating cell nuclear antigen (PCNA), and α-smooth muscle actin (α-SMA). Mechanistic study revealed that compound 1 decreased pulmonary fibrosis by inhibiting the TGF-ß/Smad signaling pathway. As a newly identified ß-carboline alkaloid, compound 1 may be used as a lead compound for developing more efficient anti-pulmonary fibrosis agents.

9.
Mar Drugs ; 20(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35877741

ABSTRACT

A new compound, exophilone (1), together with nine known compounds (2-10), were isolated from a deep-sea-derived fungus, Exophiala oligosperma. Their chemical structures, including the absolute configuration of 1, were elucidated using nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectroscopy (HRESIMS), and electronic circular dichroism (ECD) calculation. Compounds were preliminarily screened for their ability to inhibit collagen accumulation. Compounds 1, 4, and 7 showed weaker inhibition of TGF-ß1-induced total collagen accumulation in compared with pirfenidone (73.14% inhibition rate). However, pirfenidone exhibited cytotoxicity (77.57% survival rate), while compounds 1, 4, and 7 showed low cytotoxicity against the HFL1 cell line. Particularly, exophilone (1) showed moderate collagen deposition inhibition effect (60.44% inhibition rate) and low toxicity in HFL1 cells (98.14% survival rate) at a concentration of 10 µM. A molecular docking study suggests that exophilone (1) binds to both TGF-ß1 and its receptor through hydrogen bonding interactions. Thus, exophilone (1) was identified as a promising anti-pulmonary fibrosis agent. It has the potential to be developed as a drug candidate for pulmonary fibrosis.


Subject(s)
Fungi , Transforming Growth Factor beta1 , Exophiala , Fibrosis , Fungi/chemistry , Molecular Docking Simulation
10.
Anal Chim Acta ; 1215: 339990, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35680338

ABSTRACT

The harsh operating conditions and time-consuming fabrication process of the photoelectrode modification process have limited the potential applications of photoelectrochemical (PEC) sensors. To overcome these drawbacks, this study introduced a unique split-type PEC biosensor for microRNA-21 (miRNA-21) detection. Specifically, a Ti3C2/MgIn2S4 heterojunction was adopted as the photosensitive material, and a target-controlled glucose release system, comprising a multifunctional porphyrin-based metal-organic framework (PCN-224), was used for signal amplification. The Ti3C2/MgIn2S4 heterojunction effectively separated the photogenerated electrons and holes, and improved the photoelectric conversion efficiency, offering a strong initial photocurrent signal during PEC biosensing. Meanwhile, the porous PCN-224 acted as a nimble nanocontainer that encapsulated glucose using a capture probe (CP). In the presence of miRNA-21, the CP formed a CP-miRNA-21 complex and then detached from PCN-224, controllably releasing the trapped glucose. The oxidization of glucose by glucose oxidase resulted in hydrogen peroxide generation, which acted as a scavenger for the holes generated on the surface of Ti3C2/MgIn2S4, and significantly enhanced the photocurrent response under visible light irradiation. Finally, the sensor exhibited good performance for miRNA-21 detection with a low detection limit (0.17 fM) and wide linearity range (0.5 fM-1.0 nM). Thus, the proposed Ti3C2/MgIn2S4-based split-type PEC sensor is a promising tool for sensitive and accurate detection of miRNA-21 and provides an innovative basis for the preparation of other high-performance sensors.


Subject(s)
Biosensing Techniques , MicroRNAs , Biosensing Techniques/methods , Delayed-Action Preparations , Electrochemical Techniques/methods , Glucose , Limit of Detection , Titanium
11.
Bioorg Chem ; 123: 105802, 2022 06.
Article in English | MEDLINE | ID: mdl-35436756

ABSTRACT

Colorectal cancer (CRC) is ranked the third driving reason for cancer death in the world. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, necessitating new effective treatment strategies. In our previous study, we synthesized compound5othat showed high anticancer potential with a 6-acrylic phenethyl ester-2-pyranone backbone, but its mechanism of action (MOA) is not understood. To articulate the MOA of 5o against colon cancer, we evaluated the anti-cancer effect of compound5oon CRC cells by cell proliferation assays. The MOA of5owas explored through cell cycle assays and apoptosis assays. The target of 5o was identified by molecular dynamic assays, ATPase assays, and surface plasmon resonance (SPR) analysis. We discovered 5o, a compound capable of inhibiting CRC cell proliferation with 1/25 folds in IC50 values compared with NCM460 cells (normal human colonic epithelial cell line). 5o induces cell apoptosis in a dose-dependent manner through PI3K/Akt/FoxO1 and NF-κB signaling pathways. In addition, 5o arrests cell cycle at G2/M by regulating MAPKs (ERK1/2 and p38) pathway. We further confirmed that 5o inhibits ATPase activity of GRP94 (Glucose-regulated protein 94) with the IC50 1.45 ± 0.06 µM. Compound 5o inhibits GRP94 to trigger regulation of PI3K/Akt and MAPKs pathways. This study reveals that 5o is a promising therapeutic agent against CRC as a novel GRP94 inhibition.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Adenosine Triphosphatases , Apoptosis , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , G2 Phase Cell Cycle Checkpoints , HSP70 Heat-Shock Proteins , Humans , Membrane Proteins , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrones
12.
J Gerontol A Biol Sci Med Sci ; 77(8): 1517-1524, 2022 08 12.
Article in English | MEDLINE | ID: mdl-34724562

ABSTRACT

AMP-activated protein kinase (AMPK) is involved in life-span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. AMPK is currently considered a promising target for preventing age-related diseases. Rubidium is one of the trace elements in the human body. As early as the 1970s, rubidium chloride (RbCl) was reported to have neuroprotective effects. In this work, we report the antiaging effect of RbCl in Caenorhabditis elegans. Specifically, we reveal that (a) RbCl does increase the life span and enhance stress resistance in C. elegans without disturbing their fecundity. (b) RbCl induces superoxide dismutase expression, which is essential for its antiaging and antistress effect. (c) AAK-2 and DAF-16 are essential to the antiaging efficacy of RbCl, and RbCl can promote DAF-16 translocating into the nucleus, suggesting that RbCl delays aging by regulating the AMPK/FOXO pathway. RbCl can be a promising agent against aging-related diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Longevity , Rubidium , AMP-Activated Protein Kinases/metabolism , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Chlorides , Forkhead Transcription Factors , Longevity/physiology , Rubidium/metabolism
13.
Bioorg Chem ; 116: 105375, 2021 11.
Article in English | MEDLINE | ID: mdl-34563999

ABSTRACT

A new diphenylamine derivative, scediphenylamine A (1), together with six phthalimide derivatives (2-7) and ten other known compounds (8-17) were obtained from the marine-derived fungus Scedosporium apiospermum F41-1 fed with synthetically prepared anthranilic acid and phthalimide. The structure and absolute configuration of the new compound were determined by HRMS, NMR, and X-ray crystallography. Evaluation of their lipid-lowering effect in 3T3-L1 adipocytes showed that scediphenylamine A (1), N-phthaloyl-tryptophan-methyl ester (4), 5-(1,3-dioxoisoindolin-2-yl) pentanamide (5), perlolyrine (10) and flazine (11) significantly reduced triglyceride level in 3T3-L1 cells by inhibiting adipogenic differentiation and synthesis with the EC50 values of 4.39, 2.79, 3.76, 0.09, and 4.52 µM, respectively. Among them, perlolyrine (10) showed the most potent activity, making it a candidate for further development as a potential agent to treat hyperlipidemia.


Subject(s)
Alkaloids/chemistry , Biotransformation , Hypolipidemic Agents/chemistry , Phthalimides/chemistry , Scedosporium/chemistry , ortho-Aminobenzoates/chemistry , 3T3-L1 Cells , Animals , Mice , Molecular Structure , Phthalimides/chemical synthesis , ortho-Aminobenzoates/chemical synthesis
14.
Anal Chem ; 93(32): 11251-11258, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34369163

ABSTRACT

Photoelectrochemical (PEC) sensors are relatively new sensing platforms with high detection sensitivity and low cost. However, the current PEC biosensors dependent on ultraviolet or visible light as the exciting resource cause injuries to biological samples and systems, which restrains the applications in complicated matrixes. Herein, a near-infrared light (NIR)-initiated PEC biosensor based on NaYF4:Yb,Tm@NaYF4@TiO2@CdS (csUCNRs@TiO2@CdS) was constructed for sensitive detection of acute myocardial infarction (AMI)-related miRNA-133a in an immobilization-free format coupled with a hybridization chain reaction and a redox circle signal amplification strategy. A low-energy 980 nm NIR incident laser was converted to 300-480 nm light to excite the adjacent TiO2@CdS photosensitive shell to generate photocurrent by NaYF4:Yb,Tm@NaYF4 upconversion nanorods. Also, magnetic beads were employed for the homogeneous determination of target miRNA-133a to reduce the recognition steric hindrance and improve the detection sensitivity. The photocurrent response was positively correlated with the level of ascorbic acid as the energy donor to consume photoacoustic holes produced on the surface of csUCNRs@TiO2@CdS, which was generated by alkaline phosphatase catalyzation and regenerated by tris(2-carboxyethyl) phosphine reduction upon the appearance of miRNA-133a. Exerting a NIR-light-driven and immobilization-free strategy, the as-constructed biosensor displayed linearly sensitive and selective determination of miRNA-133a with a detection limit of 36.12 aM. More significantly, the assay method provided a new concept of the PEC sensing strategy driven by NIR light to detect diverse biomarkers with pronounced sensitivity, light stability, and low photodamage.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanotubes , Electrochemical Techniques , Infrared Rays , Limit of Detection
15.
Eur J Med Chem ; 213: 113185, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33485256

ABSTRACT

In this work, we found that 14-deoxy-11,12-didehydroandrographolide (2), a derivative of andrographolide (AP, 1), had greatly reduced cytotoxicity compared with AP and exhibited moderate anti-osteoclastogenesis activity. Thirty compounds were synthesized by introducing anti-osteoporosis chemotypes at C-19 of 2. Six of them exhibited stronger inhibition of osteoclastogenesis than AP. Of note, compound 12g displayed the most potent activity with IC50 value of 0.35 µM. The expression levels of osteoclast-specific genes such as TRAcP, CTSK, NFATc1, and MMP-9 were also decreased by 12g treatment. Furthermore, Western blot and immunofluorescence analyses demonstrated that compound 12g inhibited osteoclast differentiation through downregulation of RANKL-induced NF-κB signaling pathway. In an ovariectomized (OVX) female mice model, compound 12g significantly ameliorated bone loss. Therefore, compound 12g exhibited promising in vivo efficacy and low toxicity, indicating its therapeutic potential for the treatment of osteoporosis.


Subject(s)
Bone Resorption/drug therapy , Diterpenes/pharmacology , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoporosis/drug therapy , Animals , Bone Resorption/metabolism , Cell Differentiation/drug effects , Disease Models, Animal , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Female , Mice , Mice, Inbred C57BL , Molecular Structure , Osteoclasts/metabolism , Osteoporosis/metabolism , RAW 264.7 Cells , Structure-Activity Relationship
16.
ACS Appl Mater Interfaces ; 12(38): 42604-42611, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32852185

ABSTRACT

A novel photoelectrochemical (PEC) aptasensor was fabricated for DNA detection based on the coupling of cosensitization and peroxidase-like catalytic activity. Specifically, the surfaces of branched-TiO2 nanorods (B-TiO2 NRs) were modified with Cd2+ and S2+ to obtain B-TiO2 NRs/CdS hybrid structures, which were subsequently used as matrices to immobilize hairpin DNA (hDNA) probes. CdTe/TCPP (TCPP = meso-tetra(4-carboxyphenyl)-porphine) used for signal amplification was labeled on the terminal of the hDNA probe. Without the target DNA (tDNA) presence, the immobilized hDNA probe with CdTe/TCPP possessed a hairpin form and was located near the B-TiO2 NRs/CdS electrode surface, forming a cosensitized structure formation and then generating strong photocurrent with H2O2 as the electron donor. During detection, the specific recognition of tDNA by the sensing hDNA probe triggered the formation of the G-quadruplex/hemin DNAzyme, which effectively catalyzed the decomposition of H2O2. Meanwhile, cosensitization disappeared when the hDNA probe hybridized with tDNA, further reducing the photocurrent. With a double-signal amplification strategy, the sensing platform designed in this work demonstrated a linear detection ability in the 0.5 fM-5 nM range with a detection limit equal to 0.14 fM. Notably, through encoding in the base sequences of the hDNA and marking it, a versatile PEC platform could be structured for the detection of various DNA targets, which could promise applications in point-of-care diagnostic fields.


Subject(s)
Cadmium Compounds/chemistry , DNA, Catalytic/chemistry , DNA/analysis , Hemin/chemistry , Nanocomposites/chemistry , Porphyrins/chemistry , Sulfides/chemistry , Titanium/chemistry , Biocatalysis , DNA Probes/chemistry , DNA, Catalytic/metabolism , Electrodes , G-Quadruplexes , Hemin/metabolism , Humans , Particle Size , Surface Properties
17.
Phytomedicine ; 78: 153292, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32777487

ABSTRACT

BACKGROUND: Brown adipose tissue (BAT) activation is a promising therapeutic target to treat hyperlipidemia with obesity. Huang-Qi San (HQS), an traditional Chinese medicine, can ameliorate hyperlipidemia with obesity, but its mechanism of action (MOA) is not understood. PURPOSE: To articulate the MOA for HQS with animal models. METHODS: The main chemical constituents of HQS were identified by high-performance liquid chromatography (HPLC) based assay. Hyperlipidemia with obesity rat models induced by high-fat diet were employed in the study. The levels of the fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) were measured to evaluate the ability of HQS to ameliorate hyperlipidemia with obesity. Pathological analyses of organs were conducted with Oil Red O staining, hematoxylin-eosin (H&E) staining and transmission electron microscopy. The expression of mRNAs related to thermogenic genes, fatty acid oxidation-related genes and mitochondria biogenic genes were examined by quantitative real-time PCR. The protein expressions of uncoupling protein 1 (UCP1) were investigated by immunohistochemistry and western blot. Simultaneously, the protein expression of PR domain containing 16 (PRDM16), ATP synthase F1 subunit alpha (ATP5A) was detected by western blot. RESULTS: HQS ameliorates metabolic disorder, lipid ectopic deposition, obesity and maintained glucose homeostasis in hyperlipidemia with obesity rats. HQS can significantly increase the number of mitochondria and reduced the size of the intracellular lipid droplets in BAT, and increase the expression of BAT activation-related genes (UCP1, PGC1α, PGC1ß, Prdm16, CD137, TBX1, CPT1a, PPARα, Tfam, NRF1 and NRF2) in vivo. Furthermore, UCP1, PRDM16 and ATP5A proteins of BAT were increased. CONCLUSION: HQS can activate BAT and browning of S-WAT (subcutaneous white adipose tissue) through activating the PRDM16/PGC1α/UCP1 pathway, augmenting mitochondrial biogenesis and fatty acid oxidation to increase thermogenesis and energy expenditure, resulting in a significant amelioration of hyperlipidemia with obesity. Therefore, HQS is an effective therapeutic medicine for the treatment of hyperlipidemia with obesity.


Subject(s)
Adipocytes, Brown/drug effects , Adipocytes, White/drug effects , Drugs, Chinese Herbal/pharmacology , Hyperlipidemias/drug therapy , Adipocytes, Brown/physiology , Adipocytes, White/metabolism , Adipocytes, White/physiology , Animals , Astragalus propinquus , Diet, High-Fat/adverse effects , Drugs, Chinese Herbal/chemistry , Energy Metabolism/drug effects , Fatty Acids/metabolism , Gene Expression Regulation/drug effects , Hyperlipidemias/etiology , Hyperlipidemias/pathology , Lipid Metabolism/drug effects , Male , Obesity/drug therapy , Obesity/etiology , Rats, Sprague-Dawley , Thermogenesis/drug effects
18.
Zhongguo Zhong Yao Za Zhi ; 43(12): 2586-2592, 2018 Jun.
Article in Chinese | MEDLINE | ID: mdl-29950080

ABSTRACT

To investigate the mechanism of the treatment of hyperlipidemia rats induced by Huangqi San. The 40 male SD rats were randomly divided into normal group, model group, Huangqi San low and high dose group (1, 2 g·kg⁻¹), and positive lipitor group (2 mg·kg⁻¹). The normal group feeds on base feed, and other groups feed on high-fat feed. After 8 weeks, the hyperlipidemia model was successful. After intervention by drugs for 13 weeks, fasting blood glucose, total cholesterol, triglycerides and LDL cholesterol content of all rats were measured. The pathological changes of liver and skeletal muscle of rats were observed in rats. Real-time PCR and Western blot were used to detect the mRNA and protein expression levels of AMPK signaling pathway in the liver and skeletal muscles (AMPK, ACC, CPT1A, SREBP2, HMGCR). The degree of FPG, TC, TG and LDL-C were the highest in the model group, and the liver and skeletal muscle pathology were the most obvious. After intervention by Huangqi San and lipitor, a significant reduction in the blood sugar blood fat, liver, and skeletal muscle injury has improved significantly, except SREBF2 and HMGCR mRNA and protein expression of this enzyme is reduced, other AMPK pathway related mRNA and protein expression increased significantly. Huangqi San effect is superior to lipitor. Huangqi San may improve hyperlipidemia by regulating the AMPK signaling pathway, increasing the oxidation of fatty acids and inhibiting cholesterol synthesis.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hyperlipidemias/drug therapy , Signal Transduction , Adenylate Kinase/metabolism , Animals , Blood Glucose/analysis , Cholesterol/blood , Liver/pathology , Male , Muscle, Skeletal/pathology , Random Allocation , Rats , Rats, Sprague-Dawley , Triglycerides/blood
19.
Front Pharmacol ; 9: 345, 2018.
Article in English | MEDLINE | ID: mdl-29713279

ABSTRACT

Objective: Insulin resistance (IR) is a risk factor for non-alcoholic fatty liver disease (NAFLD), which is characterized by lipid accumulation in hepatocytes. AMP-activated protein kinase (AMPK)-induced sterol regulatory element binding protein-1c (SREBP-1c) phosphorylation is crucial for proper regulation of lipid metabolism in the liver. Astragaloside IV (AST-IV) was found to decrease lipid accumulation in hepatocytes by activating AMPK, which is required to regulate lipid metabolism in liver tissue by inducing SREBP-1c phosphorylation. Method: To evaluate the direct effect of AST on lipid accumulation in hepatocytes with IR and elucidate the underlying mechanisms, we induced IR in HepG2 cells, and used compound C and 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) (an AMPK inhibitor and agonist, respectively) as control substances. We evaluated glucose, triglyceride (TG), and non-esterified fatty acid (NEFA) production, as well as SREBP-1c transcription, SREBP-1c protein expression, and downstream gene expression with or without the presence of AST. We also investigated whether phosphorylation of SREBP-1c at Ser372 was required for AST function. Results: We found that AST attenuated IR and lipid accumulation in HepG2 cells. As an AMPK activator, AST promoted gene expression and activation of AMPK by increasing phosphorylation of AMPKa. AST also inhibited translocation of SREBP-1c into the nucleus of insulin-resistant HepG2 cells by inducing phosphorylation of SREBP-1c at Ser372. Conclusion: This study demonstrated that AST attenuates IR and lipid accumulation in HepG2 cells by regulating AMPK-dependent phosphorylation of SREBP-1c at Ser372, suggesting AST as a promising drug for treating hepatic steatosis.

20.
Bioorg Med Chem ; 25(20): 5506-5512, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28818460

ABSTRACT

The combination of berberine and baicalein may have a better therapeutic effect against disease. To explore the combined effect of baicalein and berberine in the treatment of obesity, we designed and synthesized a hybrid compound, and its biological activities were evaluated in 3T3-L1 adipocytes. The structures of the berberine-baicalein (BBS) compounds were confirmed by 1H NMR, 13C NMR, ultraviolet spectroscopy and high resolution mass spectrometry (HRMS). The present study showed that the IC50 values of the inhibitory effects of baicalein, berberine and BBS against 3T3-L1 cells were 29.81±0.90, 21.84±1.67 and 9.42±0.60µM, respectively. The expression of mRNAs related to lipolysis and lipogenesis were examined by quantitative real-time PCR. The results showed that BBS could up-regulate the expression of the Atgl gene and down-regulate the mRNA expression of Srebp-1c, Fasn, Scd1, and Acc in 3T3-L1 adipocytes. These results indicate that BBS may have a stronger effect than baicalein and berberine on the viability of 3T3-L1 preadipocytes. In addition, BBS may have therapeutic effects and pharmacological activities against obesity. This "medicine couple" may be beneficial for studies of traditional Chinese medicine.


Subject(s)
Adipocytes/drug effects , Berberine/pharmacology , Drug Design , Flavanones/pharmacology , Lipids/antagonists & inhibitors , 3T3-L1 Cells , Animals , Berberine/chemical synthesis , Berberine/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Flavanones/chemical synthesis , Flavanones/chemistry , Mice , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...